Biomass/Coal Gasification-ESE-906

Background

- 1. Give brief rundown of the existing program.
 - i. Biomass is becoming one of the most important sources for energy in Pakistan, and has a potential to substitute up to 33% of the total current energy consumption
 - ii. Students should have better understanding of different processes in converting biomass into syngas, liquid fuels, power/electricity generation and challenges associated with each process.
 - iii. The course will mainly focus on two platforms for converting biomass/coal into liquid fuels: thermochemical and biochemical
- iv. Students will be introduced to the concept of overall mass and energy balance and life cycle analysis
- v. Understanding of Thermodynamics and chemical kinetics involved in gasification

Rationale

- 1. Rationale for offering/launching the new course.
 - It is essential to produce scientists who will make significant contributions in the field of application of available Biomass/Coal for energy production.
 - To design and develop Biomass/Coal gasification technology for energy systems.

Educational Objectives

- Objectives of the program under which the proposed course will be conducted The objectives of this I course are:
 - To identify various types of biomass for energy production
 - To discuss advantages and disadvantages of comprehensive demonstration of a community-scale biomass energy system
 - To recognize key factors of reactions occurring in gasification
 - To evaluate the sustainability of mass balances and analytical methods for biomass pretreatment experiments

- To discuss the stability and selectivity of the FT catalyst
- To describe and discuss the Thermodynamics and chemical kinetics of gasification process
- To understand Biomass gasification power generation plant with Integrated gasification combine cycle (IGCC)
- To discuss Hydrogen and Methane production for utilization as a renewable fuel
- To recognize the Axes of development in chemical and process engineering for converting biomass to energy
- To discuss the financing strategies for industrial scale gasification technology and technology development start-ups

International Practice

4. Specify the universities of repute where the proposed course is being conducted.

- University of Minnesota
- University of Northern British Columbia
- Burlington County College
- AGH University of Science and Technology

Proposed Timeframe of Commencement

5. Specifying semester with year. Summer 2015

Course Contents

- 6. Give details of the course, on the following lines:
 - Theoretical 3CH
 - Practical 1CH
 - Contact hours 45 hrs.
 - OHT -1 15%
 - OHT-2 15%
 - Final 50 %

- Assignments 5%~10%
- Quizzes 10%~15%

The Content of this Biomass/Coal Gasification for Energy Systems course are:

- Introduction to biomass and its chemistry
- Comprehensive demonstration of a community-scale biomass energy system
- Mass balances and analytical methods for biomass pretreatment experiments
- Biomass/coal conversion by liquefaction and gasification
- Advanced technologies for biomass hydrolysis
- Advanced product recovery technologies
- Process engineering for energy production
- Syngas cleaning and pretreatment methods
- Thermodynamics and chemical kinetics of gasification process
- Hybrid approach to synthesize liquid fuels
- Clean biomass gasification process description
- Biomass/coal gasification power generation plant with Integrated gasification combine cycle (IGCC)
- Hydrogen and Methane production and utilization as a renewable fuel
- Axes of development in chemical and process engineering for converting biomass to energy
- Financing strategies for industrial scale gasification technology and technology development start-ups
- Carbon capture techniques

Expected Outcome

The Expected Outcome of this course are:

- The students will be able to comprehend the world energy challenge and the advantages and disadvantages of the basic energy carriers.
- The students will be able to differentiate between different types of catalysis and next generation energy production systems.

- The students will be familiar about the catalyst requirements and advancement in biofuel production.
- The course will provide knowledge about XTL technologies and basic principles of catalysis.
- The topic of artificial photosynthesis and photo-catalysis will be important for the advance energy production technologies.
- f. Contents with suggested contact hours

Ν	Topics	Theory/Pract		
0.		ical		
1	Introduction to biomass and its chemistry	Theory		
	Biomass Availability & Potential			
	Traditional Biomass and Energy Crops			
	Biomass Characterization			
	Structure of Wood			
2	Comprehensive demonstration of community-scale biomass	Theory		
	energy system			
	 Demonstration of bench scale Biomass energy system 			
	Line tracing and process control			
	• Critical dimensions of gasifier, such as reactor diameter, air			
	nozzle (no and diameter), distance between air nozzle and			
	grate			
	Case study			
	Field trip			
3	Mass balances & analytical methods for biomass pretreatment	Theory		
	experiments			
	Feed stocks characteristics			
	Pretreatment methods			
	Process integration			
	Field trip			
4	Biomass conversion by liquefaction and gasification	Theory		
	Coal to liquid fuel			
	Direct biomass liquefaction			
	Fischer-Tropsch Synthesis			

	Flash Pyrolysis			
5	5 Advanced product recovery technologies			
	Steam reforming			
	Water gas shift reaction			
	Membrane separation			
	Advanced technologies			
6	Syngas cleaning and pretreatment methods	Theory		
	 Syngas cleaning methods 			
	Pretreatment techniques			
	Gasification and its future			
7	Thermodynamics and chemical kinetics of gasification process	Theory		
	 Gasification reactions thermodynamics and modeling 			
	 The chemical kinetics of gasification and reactor theory 			
	Gasification processes			
	Classification of different gasifiers			
	• Practical issues related with pressurization ,sizing, particulate			
	removal			
	Designing and selection of gasifier system components like air			
	blowers and producer gas burners			
	Material selection for various components of the gasifier system			
	and best practices of gasifier operation, how to start and shut			
	down			
	 Industrial case study/field trip 			
8	Power generation plants	Theory		
	 Economics of power generation 			
	Combined cycle power generation			
	 Steam generators and steam turbines 			
	 Diesel engine and gas turbine power plants 			
9	Axes of development in chemical and process engineering for	Theory		
	converting biomass to energy			
	Global outlook			
	Enhancement of raw biomass			
	Conversion of biomass to fuels and chemicals			
	Chemical engineering development			

10	Financing strategies for industrial scale gasification technology	Theory	
	and technology development start-ups		
	The financial environment		
	Govt. incentives and funding sources		
	Case study		

g. Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Books
No.			
1.	Biomass to biofuels, Wiley-VCH,	Allian A, Vertes	Text
	Weinheim, 2010		
2.	Hydrogen and Syngas Production	Ke Liu, Chunshan Song	Text
	and Purification Technologies,		
	Wiley-VCH, Weinheim, 2010		
3.	Advances in Fischer-Tropsch	B. H. Davis, Mario L. Occelli	Reference
	Synthesis, Catalysts, and		
	Catalysis.CRC, 2010		
4.	Biomass Gasification, Pyrolysis	Prabir Basu	Reference
	and Torrefaction: Practical Design		
	and Theory, 2013		
5.		Christopher Higman,	Reference
	Gasification 2008	Maarten van der Burgt	